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ABSTRACT

The diffusion approximation, a simplified formulation
of the equations of radiation transport, is investigated from
two points of view. First, consideration is given to deri-
vation of the approximation, together with discussion of
some of the assumptions involved and limitations of validity.
Second, methods are examined for solving the diffusion equa-
tion by finite difference approximations. In this second part,
particular attention is given to the problem of proper space
differencing, and numerical examples are presented showing
results of various procedures.
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INTRODUCTION

The transport of radiation through matter is accompanied by a variety
of interaction phenomena whereby photons are scattered, absorbed, and emit~
ted. A detailed description in complete generality is extremely complicated,
so that various approximate treatments have been proposed for use in special
situations. This paper is concerned with one of these, the "diffusion approxi-
mation," which has been used widely for the solution of problems,

In Part I, we record several of the methods by which the diffusion
equation can be derived. The examples have been chosen to illustrate the
nature of the assumptions and to suggest ways in which similar, but less
restrictive, assumptions could be employed.

In Part II, we present results of the numerical study of this equation,
This extremely nonlinear, partial differential equation has not been solved in
closed form except for a small number of highly specialized situations. Ap-
plication to more complicated problems of interest requires special techniques
that generally result in additional errors beyond those introduced by the dif-
fusion assumption.

Specifically, in Part II, we present results of the study of certain
problems related to one of the numerical-solution techniques, that in which
the differential equation is replaced by a finite difference approximation.

The problem of proper space differencing is of principal concern, although
some mention is given to the matter of time differencing.

All numerical solutions were obtained by use of IBM Electronic Data
Processing Machines, type 704.



PART I. THE DIFFUSION APPROXIMATION

A. Basic Derivation

The fundamental entity in the transport equation is the 'intensity of
radiation," I, 8, v,t). This is defined so that

IF, 38, v, t)dasdwsdvdt

is the amount of energy of frequency v, at position ¥, and at time t which
passes in the direction of the unit vector § through an area dag normal to
8, in the solid angle dwg, in the frequency interval dv, and in the time in-
terval dt. As written, we have indicated no distinction as to polarization
components. In the following, we neglect polarization effects (which, in cer-
tain cases, may be extremely important) by assuming that the radiation pro-
duced by any interaction is unpolarized.

Other quantities entering into the transport equation are

¢ = vacuum speed of light
hl(f, v,t) = the scattering mean free path for radiation of frequency v
A (f v,t) = the absorption mean free path for radiation of frequency v

J (T,§ v,t) = the rate of scattering-energy production per unit volume,
per unit solid angle, per unit frequency range, per unit
time

J ('i‘,'§ v,t) = the rate of emission-energy production per unit volume,
per unit solid angle, per unit frequency range, per unit
time

and the equation itself is

1 9 AR
(c at+§'v)l'—<x1+x>I+J1+Jz (1)



Two useful quantities which may be derived from the radiation intensity
function are the density of energy per unit volume per unit frequency range,
u(¥, v, t), and the flux of energy per unit area per unit time per unit frequency
range, F(F,v,t). These are*

u(f': v, t) = % ./‘I(f’ g, V’t)dws 2)
FE v,t) = f BIF, 8, v, tidw_ (3)

The interpretations are made plausible by a consideration of the result of
integrating Eq. (1) over solid angle:

du - 1 1
A 8 - e =
5t V'F ()\ + A)cu +f (Jl + Jz)dws (4)

1 2

The terms on the right are the sink and source terms to the radiation energy
field; if they vanish, then the equation, with the above interpretations of u and
f, becomes the usual expression for energy conservation.

We assume the case of conservative scattering and introduce a phase
function p(38, 8') such that

> o 1 - >
TEE Y = g f PE, $NIE, B, v, tidw_, (5)
The following normalization of the phase function

1 -
E fp(§,§' )dws =1

assures that there is no net source or sink to the energy in Eq. (4).

The first drastic assumption of the diffusion approximation is that the
radiation and matter fields behave at every instant as though they were in
equilibrium at a temperature, 6(¥,t), so that the emission rate from the

*S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Chap-
ter V, University of Chicago Press (1939). See also S. Chandrasekhar,
Radiative Transfer, pages 2~5, Oxford University Press, London (1950).




matter field can be written* in terms of an equilibrium induced emission
and a spontaneous emission described by the Planck function:

ex(- 1) 1 - exp(—17) 6
3 @B vt =—E1F 5,1 + B(v,0) )
2 A n
2 2
where
3
B(,0) = Zhy

os(2 1]

Thus, writing

A
a = —2 ™

hy
1= exp(‘@)

we may put Eq. (1) into the form

= 4 . - —_— t 1
(c o + B V)I — w [I ym fp(s' , SHI(T, 81, v,t)dws']

1
-——%-[I—B] (8)

The second drastic assumption involves the directional dependence. If
the intensity function is properly behaved, then one can expand it in a double
power series of the components of § along two fixed, orthogonal unit vectors.
The assumption here, however, is that all the terms in this expansion vanish
except those such that the intensity can be expressed as

IE, 8, v,t) = Io(f, v,t) + a-fl(f, v, t) (9)

where Iy and T, are to be determined by requiring the resulting equation to
be an identity In 3.

*See S. Chandrasekhar, An Introduction to the Study of Stellar Structure,
page 206, University of Chicago Press (1939).
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We assume that the scattering intensity from an event is a function of
the angle between the incoming and scattered beams. Then the phase func-
tion can he expanded,

o0
n
p@,8) = > a @8 (10)
n=0
with the normalization condition being

Z.o: _iz_g_zl
2n + 1

n=0

For conservative Thomson scattering, for example,
3
PE,8") = [1 + B8 ] (11)

To evaluate the integral in Eq. (8), we orient the coordinate system so
that § points along the z axis, and superimpose a spherical coordinate sys-
tem with azimuthal angle y and polar angle ¢. Then, in terms of the car-
tesian unit vectors,

A

8=k
A
i

N\ AN
8' =1 8in ¥ cos ¢ + ] sin ¥ sin ¢ + k cos P

dws' =gin ¥ dzpdcp.

After some manipulation one finds, for the more complicated of the integrals,

2n+1
—f§'p(’§')dw'—k Z S

and Eq. (8) becomes

- 11 -



© g
128,35 T)-=-1 I 1 -3 _ontl
(c 8t+§v) (Io+§f1) A [Io+§f1 I, = &1 nZo zn+3J

At

_-1; [10 + &1, - B]

Since this is to be an identity in § to first order,

Fa
ol
1 0 1
s o~ (") (12)
of ® a
Pt (-5 )y e
1 n=0 2

The final drastic assumption in the derivation is that the radiation field
varies so slowly that the time derivatives can be neglected in Egs. (12) and
(13). Then,

I, =B "
fl = —AVI, = —AVB

where
;E_LQ_ S Qa2L1>+L 5)
T Ly 2+ 3] A

Through Eqgs. (2) and (3), these results can be written

u=_%£B
C

F = f 8 [8-(=AVB)] dow_

The integral can be evaluated by the same coordinate system as before, now
with VB along the z axis. Then

- 12 -



T
F = —AVB/ 2 cos?y sin ydy
0

and the result is

u=%B

(16)
= __4m
T3

Finally, the equation for 6(F,t) can be found by requiring over-all con-
servation of energy. Let E6) be the material energy per unit volume.
Then

3 ar ° ar 7
5 I:Em(()) + ?" /; B(v,o)dv:l + v-[—?” ‘/0‘ A(V,O)VB(V,O)dv:l =0 an

The first integral is the energy density of radiation:

i [ sth = 34 8kt 4 4
?ﬂ- B(v,0)dv = —3—f hvv = 330 =ab
0 c 0 exp(is)— 1 15h ¢

where a is the radiation density constant. The flux integral is treated by
introducing the Rosseland mean of the mean free path, A(9), as follows:

i

f A(v,8) VB, 6)dv Vof A, 0) B0 4,
0 0

90

- * 8B(v, 0)
A(8)VE ‘/0‘ S5 4

Thus

f A, 6) a—%';—’e) dv
0

" B
f ®,0) 4,
0 o6

- 13 -
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The denominator can be integrated to give (ca/vr)63. Combining these re-
sults and inserting them into Eq. (17), we obtain

—% [Em(e) 4 a64]= V~[(;3a 0) veﬂ (19)

This is the diffusion equation for which the results of numerical studies are
presented in Part II.

It should be noted that if the motion of the material were considered,
an analogous equation could be derived in which the material energy per unit
volume is the sum of internal and kinetic energy per unit volume, both of
which depend on density, and the energy flux is the sum of the work flux
and the radiation flux. The latter is the same as in Eq. (19) except that the
value of A depends also on material density, p. Writing (p, 8) = material
intexrnal energy per unit mass, V = fluid velocity, g0, ) = material plus
radiation pressure, and S = energy source per unit volume per unit time,
we have

4
d 1.,  af ach _ 4
Pdt[.ew+2v-v+—p ]+V|}ﬁ—‘—3 VO}—S

where the total time derivative means the time rate of change along the path
of fluid motion (d/dt = 8/t + ¥-V).

B. Alternate Derivations and Discussion of Assumptions

We shall not discuss the first drastic assumption in the diffusion ap-~
proximation derivation -- that of the thermodynamic equilibrium of radiation
and matter fields. It is most severely violated in the vicinity of rapid space
or time variations in the field, but may become valid for practical purposes
far from these variations. _

Some information as to the validity of applying the other two assump-
tions is obtained by considering certain altermate derivations of the diffusion
equation, For one example, we assume the equilibrium condition and special-
ize to Thomson scattering only. We further assume a plane-parallel atmos-
phere in which the directional dependence reduces to dependence on a single
angular parameter, chosen to be u, the cosine of the angle between & and the
positive x axig. Equation (8) then becomes

- 14 -



19 9
(c ot T H ax>1(x”" v,t)

1. 1 [3 2
= "% {I(x,/.z, v,t) — ZE,/Z [1 + (8-8') ]I(x,u',v,t)dws,}

—- 33

1 {I(x, i, v,t) — By, e)}
2

The integration can be performed over polar angle:

1 8 2]
(c ot 8x>I( v, V5 1)

1
1 3 2 2, 2
== I(X.u,v,t)—;g[ [3—n tpt @ —1)]I(x,u',V.t)du'}

1 1
- 37 I(X, i, v, t) - B(Vs 9) (20)
7"2

Into this equation one can introduce as before the expansion

o0

n
Ix,p,v,t) = Z L & vt
n=0

and obtain an infinite set of coupled equations. The assumption that I,b,=0
for n = 2 leads, exactly as before, to the diffusion equation.

In this alternate derivation, however, we multiply Eq. (20) by (1/2) u?
and integrate from —1 to 1. Let

1
P (x,,t) =~ f 11, by v, t)dp (21)
n 2 _1
and
1 n even
ane =
0 n odd

- 15 -



Then

9P &P 36
1 n n+l 1 ne
— = e — —_— + +
* A {Pn 4n + 1)@ + 3) [(n P, nlz]}

1 B
‘Kg [Pn Tn+1 ane] (22)

Note that from Egs. (2) and (3)

47
u(x, v, t) = —C—

4r Pl(x, v, t)

Po(x, v,t)

F(x,v,t)

Equation (22) gives an infinite set of coupled equations which can, in prin-
ciple, be solved as accurately as desired. If, now, we assume Pn = 0 for
n = 3, then

ﬂﬂuE:__c_(u_ﬂ ) (23)
2

ot = ox At c
oP
1 OF 2 _ (1, 1
c ot T ok “"(x * 7\'>F (24)
1 2
c ot A, \10 27 10 4r) "2y 27 3

The diffusion approximation is now obtained by setting both sides to zero in
Eqgs. (23) and (25), and by setting 8F/3t = 0 in Eq. (24). Then

-
u=ﬂB

(¢]

1
P, =3B f (26)
1 1 4r OB
A {
(1 7\2 3 9x )

- 16 -



These are the same as the results in Eq. (16) if we define

MET
7\1

1 (27)
+

1
A
2

which, in turn, is the same as Eq. (15) for Thomson scattering. The equa~
tions as now derived, however, allow a slightly less drastic form of the as-
sumption to be introduced. We drop the requirement that 8F/dt = 0 in Eq.
(24). Then the equations become

fu, BF _
ot ox
(28)
OF , c® du _ _cF
ot 3 ox A

In this form we see that, as A — « (vacuum conditions), the equations then
approach the wave equations for which, however, the speed of propagation is
c¢/¥3 instead of c.

As 3 specific example of the further type of analysis that can be made,
consider the case in which A is a fixed constant. From Eq. (28), the flux
can be eliminated giving

o= (29)

Alternately, in the case that 8F/dt had been neglected in Eq. (28), the elimi-
nation of ¥ would have given

) (30)

du
8 ox

or o
3

There is a fundamental difference between these two equations, the first
having the essential features of a wave equation and the second being a dif-
fusion equation. [Note that Eq. (30) is identical to the one-dimensional form
of Eq. (19) in which variable characteristics of the matter have been set
constant.]

Considered from the point of view of an initial-condition boundary-value

- 17 -



problem, a difference between Eq. (29) and Eq. (30) is that one arbitrary
initial profile is allowed for Eq. (30), whereas two are allowed for Eq. (29).
Thus, the initial energy distribution is sufficient to "'start' a solution of
Eq. (30) while one can specify, in addition, the initial flux in Eq. (29).

The difference between solutions of the two equations is somewhat a
measure of the error introduced by the diffusion assumptions. We consider
the equation

(31)

which reduces to Eq. (29) or (30) according as € =1 or € = 0. Assume a
Fourier integral solution of Eq. (81):

u(x,t) = %‘/‘ f ok, w)eikx eiwt dwdk
=00 -00

This satisfies the equation provided

c icw

2
ok, w) = a(k) 5[€w2 -3 _TJ

where 6(x) is the Dirac delta function. Thus, the general solution is

[ ]
_ 1 ot ikx ct 4 22
u@x,t) = py exp( ——27te> j: 3} e [al(k)exp<2k€ 1-g ek >

ot 4 22
+ az(k)exp<— oo/ 1 =3 Nk )} dk (32)

Suppose, now, that the initial conditions (which determine oy and gy) are

such that contributions to the integral are of importance only for (4/3)(7\1{)2 < 1.
This means that the initial profile has important Fourier components only for
wave numbers much smaller than the reciprocal of the mean free path, or

that the relative change of the energy profile is initially small over a mean
free path. Then the square root may be expanded and

- 18 -



0
1 1kx 1 _ .2
u(x,t) =~ ar J ol(k)e exp(—?hk ct) dk

+ '2}% exp(— 7%) /: az(liz)eikx exp(% Akzcé dk (33)

o0

The first term is exactly the solution of the equation with € = 0; the second
term is a correction. The coefficient of t in the second term is dominantly
negative for all Fourier components of importance, so that the second term
decays with a half-life which is approximately equal to the time required
for radiation to travel one mean free path at vacuum speed.

Thus, we have seen that the diffusion equation is nearly valid (as meas-
ured by comparison with a less drastic approximation to reality) when the
mean free path is small compared with distances over which the initial en-
ergy profile changes appreciably, and, moreover, that under these circum-
stances, the solution of the diffusion form (30) is approached by that of the
more nearly exact equation (29), That these conclusions are applicable to
real problems of interest is confirmed by the work of Barfield* who demon-
strated by numerical studies the approach of diffusion and transport solutions
as both approached steady state.

As a second example to illustrate properties of the diffusion equation,
we discuss briefly another derivation. This time, we start from an even
simpler form of the transport equation, that in which there is no scattering,
and the absorption mean free path is a fixed constant. We assume the equi-
librium necessary for Planck emission and write the equation for a plane-
parallel atmosphere:

0 9 1
(—(1; m + u $> Ix,u,rv,t) = —*x[I(X,M, v,t) — B, 0)]

With A independent of frequency, we can integrate over frequency and put

w -
4r B(v,0)dyv = a04 = §(x,1)
¢ Jy
. w e (34)
= I(x, 4, v, 1)dv = R(x, 1, 1)
0 J

*W. D. Barfield, Los Alamos Scientific Laboratory Report LA-1709 (June, 1954).
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Then

9
(% gat- " g;)R(x,u,t) =~ IR, 4, 1) — B(x,1)] (35)

This equation can be solved for R
= X .
R{x,p,t) = f(u,t uc>exp( M)

X
X —x' X — X!
+f {)(x',t— e )exp(— Py )dx' (36)

where flu,t — (x/uc)] is an arbitrary function of its arguments. Suppose, for
example, that the boundary conditions specify the functions R(xj,u,t) for
£ > 0 and R(xq,H,1) for p < 0, where X1 > Xg. Then, for x5 = x = X

X - Xo X — XO
R(x,u,t) = exp\— ) R xo,#,t = "ho

X
X — x! X — X!
+f @(x',t— S )exp(—- o ) dx! foru >0

%o

-

T (37)
x — %) X — X
R(x,u,t) = exp\— pA R x19#’t —T
x
+f @(x',t _X ;cx’>exp(—x;7\x'> dx? for up < 0
X, J

The interpretation of these results is as follows. R is composed of an at-
tenuated primary beam from the boundaries, plus the sum of the components
produced by emission along a line in the direction of the beam. The contri-
butions are 'retarded" in the mathematical solution, corresponding to a finite
time of travel, and have been attenuated by absorption during that travel.
Thus, the effect of neglecting the time derivative in Eq. (35) (achieved by
putting ¢ — =) is the same as neglecting the retardation. This is a valid
procedure provided that the value of & does not change much in the time
required for radiation to travel a mean free path at vacuum speed, in agree-
ment with the previously derived condition for dropping the time derivative
terms.

- 920 -



The diffusion equation is derived by neglecting these retardations and
also by making a Taylor expansion of &(x',t) about the point x. The integrals
can then be evaluated, higher order terms dropped, and the flux and energy
density determined from the resuliing expression for R, The procedure sug-
gests ways in which higher order corrections can be added to the diffusion
equation. An analogous procedure can be carried through for the more gen-
eral forms of the transport equation.

- 21 -



PART II. NUMERICAL SOLUTION OF THE DIFFUSION EQUATION

A. Methods of Solution

The diffusion equation, Eq. (19), has been studied in the one-dimensional
form

9 4 oF
ot [Em‘x"” +ab ]— 3
¢ (38)
4
_ ca 90
F = -3 Ax, 0) Bx J

En and A are explicit functions of position in some of the studies in order
that the presence of two different kinds of matter can be represented.
(Throughout Part IT, A without the bar represents the Rosseland mean of the
mean free path.)

In the problems we have studied, a wall is placed at x = 0 across
which the flux of energy is specified as a function of time. Initially, tem-
perature and material profiles are specified to the right of the wall; in all
cases, 6§ - 0 ags x — o,

To solve the problems numerically, we approximate the derivatives by
finite differences. The space to the right of the wall is divided into "cells"
of width éx, each of which has a temperature varying with time. The cells
are labeled with index j and their boundaries with index j = 4. A fictitious
cell, #0, is introduced at the left of the wall for use in applying the input
flux condition. The calculation advances time-wise in finite steps, 6t.
These are counted by index n in such a way that the time at the end of
cycle #n is t& = nét.

-22 -



WALL

i+l

i 1 L. 1 ) 1 1 1

/72 12 212 j-/72 j+i/72 j+3/72

The time advancement is by the explicit method, used throughout:

n+l

n
4 _ ot F7o_
- [Em(x) 0) + ae ] - ax ( j+% Fj“%‘) (39)

[Em(x, a) + a04] |

i

Thus, the partial differential equation is reduced to a set of algebraic
equations, one for each cell, from which the temperatures at the end of each
time cycle can be determined in terms of known quantities at the beginning
of the cycle.*

Various implicit time differencing methods have been proposed, but it
is not our purpose to investigate these. In the test problems, we have re-
quired 6t to be small enough so that any further decrease would produce
negligible difference in results. In all cases tested, it was found that 6t
was small enough if the equations were stable—see Appendix I.

Our alm was to investigate the relative merit among various methods

of writing F?:i:“ all of which formally reduce to the differential expression
3

as 0x — (. Accepting the validity of the diffusion equation, we wanted to

find a satisfactory method for solving it numerically in as many situations

’

*We have solved the equations by successively iterating with Newton's method.
An alternate procedure, in which the left side of Eq. (39) is replaced by

n
+ 4a03]

n+1 n
, §7-9)

produces simpler equations to solve but can introduce fairly large inaccu-
racles unless 6t is very small—-smaller than otherwise required. The
form in Eq. (39) rigorously conserves energy.

aEm(x, 0)
20
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as possible. One of the methods tested, Eq. (41) below, appears to be at
least as accurate in solving the diffusion equation as the diffusion equation
is in representing the true radiation transport. In those circumstances
where the diffusion approximation itself is most nearly valid, the method
gives the best approximation to it; in certain of the circumstances in which
the diffusion approximation is questionable, the method still gives a good
solution; in others, the method becomes poor, but the qualitative error is
rather easily estimated.

In general, any finite difference procedure used to solve Eq. (38) will
yield results which differ from the true solution. Thus, our aim could be
phrased as follows: Given the task of solving Eq. (38) to a particular degree
of accuracy, what method of space differencing will allow one to use the
largest intervals, 6x ?

To answer this question, a criterion of accuracy is required. In cer-
tain circumstances, a rigorous solution of Eq. (38) can be obtained, and
direct comparison of this with the numerical solutions is possible. For
many problems of interest, however, no such comparative solutions have
been obtained. For these, we have used as a criterion of accuracy the rela-
tive insensitivity of the various numerical solutions to variations in 6x. The
validity of this criterion depends upon the convergence of the numerical so-
lution to the true solution as éx — 0 (with 6t always below the stability limit).
Proof of this convergence or of the validity of the criterion has not been at-
tempted; experience with its use, however, has shown the coriterion to be ac-
ceptable in the cases tested; several examples are presented in this report.

The space differencing method which has proved most satisfactory in
producing accurate solutions is based on application of the assumption that
between the centers of any pair of cells, the instantaneous temperature dis-
tribution is that given by the steady state solution of Eq. (38) with the cell
temperatures as boundary conditions at the two centers. Since the steady
state equation is of second order, the two temperatures completely specify
the solution, and in terms of them, the flux is determined. When the flow
is not in local steady state, the calculation based on this assumption will be
in error, but the direction of the error is usually easily estimated. Under
these circumstances, however, the diffusion approximation itself is of ques-
tionable validity.

In a certain sense, this method of differencing is the 'best" possible
one. The criterion of 'best" is that the method gives the right results in
the "average' of all situations (since nonsteadiness can occur in two different
directions from steadiness) and that the flux is determined by the minimum
number of required data (only the two adjacent temperatures), Corrections
to include the lowest order effects of unsteadiness must necessarily require
the use of additional data, either in the form of temperatures in the next
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adjacent cells or temperature changes in the adjacent cells.

The method is applied at a cell boundary as follows. In the steady
state near this boundary, F of Eq. (38) is a constant, and we must solve
the differential equation

4
__¢ca d6_
F =—2"Mx0) ¢ (40)

subject to the conditions that 6 = 0;1 at x = —6x/2, and 0 = 9;:_ 1 at x = 6x/2

(where we have temporarily put the origin of x at the cell boundary), The
result is an expression for F}l+ 1 as a function of 0;‘, 0;1+ 1’ and 6x,

To apply this specifically, an additional assumption is needed. This is
that each cell is homogeneous within itself in such characteristics as density
and material kind, If a material discontinuity is present, it should be located
at a cell boundary (as is usual in the Lagrangian form of hydrodynamic cal-
culations). If this is not possible, then a modification of this method can be
carried through. General derivation of the method is given in Appendix II.

As g simple example, consider the case in which A = Alom in the cell
at the left and A = A,0™ in the cell to the right. Then the solution of Eq.
(40) is

-(6x/2)
ox X
==F|lgr + — x<0
=—F ox + K’-{— x>0
1 2
Applying the condition at x = 6x/2, we get
Steady-State Method
Fn - 4ac 2A1A2 R m+4 _ on m+4 41)
j+i 36x(m + 4) A1 + A2 j+1 j (
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For most real materials the mean-free-path formulas are considerably more
complicated than the simple forms used in the example. Extension to these
general forms is possible, however, because a first integral of the steady-
state problem can always be obtained, and the resulting equation to solve,
Eq. (40), is of first order. Further discussion is given in Appendix II.

The difference form (41) can be extended to correct for the fact that
the local configuration may not be in steady state. Representing the local
energy change rate by E (= 0 in steady state), we would have

4
+ _ca d [ dé
E =3 dx[h(x’e)de

where E is now assumed to be a constant, determined for the cycle by

Here it is implied that the flux contributions to the correction are calculated
by Eq. (41). Then, with x = 0 at the cell boundary in question, we have,
analogous to Eq. (40),

. ca de4
XxE — F ='§-}\.(x,9)K (40*)

This differential equation is to be solved subject to the boundary conditions
of adjacent cell-center temperatures, and a new expression for flux is ob-
tained which reduces to the form (41) if the local configuration comes to a

steady state (Fn g = FO .\
Jtz J-z
Thus, in the example leading to Eq. (41),

Extended Steady-State Method
Fn - 4ac 2A1A2 an m+4 _ en m+4
j+3 36x(m + 4) A1 + A2 j+1 j
A — A
1/ 2 1 n n
) ] e
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For comparison with results from the above differencing method, we
have tried several others. In one of these, we write

A-Average. Method

o =_(c3_a) "j( ?) j+1( 1+x> &Jﬂ) - () (42)

14 ox

where the mean free paths are calculated in terms of quantities at the ad-
jacent cell centers and averaged.
Another method is derived, in a somewhat different manner, from the

assumption of constant flux, Thus Aj +3 is determined by

4 4\ 4 4\ _1 4 4
M) <°J+% - "1) = "1+1("j+1)<°1+1 = °j+%> =2 M+d <"1+1 "j)

from which

and

Opacity-Average Method

4 4
n n n n
n ca { 2 ("j)"m("iﬂ) @1) - Q’J)
¥ 2—(3—) A (6™ + A, (o™ ox (43)
l_j(j) j+1(j+1>

This form is said to be reasonable, because one is adding opacities for the

two cells, This is a good physical argument, but has little mathematical

validity, especially when the mean free path is very small in one of the cells.
A variation of this last procedure is derived by setting

4 4] _ 4 4.1 4 4
M) [”1+% - "1} = M1 (%) ["m "J«%] 2 M4 ["J+1 "j]

W=
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Here the solution is, in general, somewhat more difficult to obtain; we ex-
hibit it for a special case, that in which A = A19m to the left and A = A26m
to the right. In this case,

m/4
4 4

N _ 2A1A2 Alaj +A291+1-,

j+3 A1+A2 A1+A2 J
and
Modified Opacity-Average Method

o . /4 I
o] iy (A () A (0) O) - () "
j+3 3 A1 + A2 A1 + A2 6x

In the case that Ay = Ay, A at the boundary is simply calculated as a func-
tion, for that material, of the fourth root of the average of the fourth powers
of the adjacent cell-center temperatures. This is true in this method for
any form of the mean-free-path formula, zs long as it is the same for the
two adjacent cells, The results suggest a variety of other ways in which
boundary mean free paths could be calculated from various sorts of tem-
perature averages when the two cells are of the same material; we have
investigated none of these.

A final method which we have investigated is obtained from the (dif-
ferentially) equivalent flux expression

__fea 3 80

F =~ 3 0 A(x, 9) o

This form is often convenient in implicit time differercing schemes because
the resulting equations are linear in the unknown temperatures. A wide
variety of forms could be used for the average of 63A at cell boundaries;

we have investigated only that which leads to the expression

Linear-Difference Method

n n
= 0 G BB
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B. The Test Problems

We choose particular forms for En,(x,0) and A(x, 8) which show the
qualitative features of real materials but are relatively simple for calcula-
tion. Thus

Em(x, 0) = K(x)0
3 (48)
Alx, 0) = A(x)8

where A(x) and K(x) are constants for one-material problems and step func-
tions for two-material problems.
It is convenient to introduce dimensionless variables for all quantities
as follows:
6 — aT A
A(x) =~ BL(y)
K&) = vQ) L 47)

t— 12

x -~ &y ]
where the Greek symbols on the right are constants which carry the dimen-

sions of the quantities on the left. Then Eq. (38), with Eqs. (46) and (47)
inserted, can be written

4
9 ( 4) _ . 8 3 9T
oz QT + nT £ oy <LT 83)

-

where
n= aa3 [ (48)
Y
_ caﬁas'r
E=—"—5
3vé J

The value of 7 is chosen according to the range of values of Q and T,
which in turn are arbitrarily chosen to be numbers in the range 0-10. This

- 29 -



means that a value of 7 ~ 0.1 allows a study of situations where either
radiation or material specific heat dominates. Since the radiation density
constant, in units appropriate to many situations, is

a=137_&.

cm volt

we have chosen 7 = 0.137 throughout the problems.

In a sense, the value of ¢ is immaterial; as long as 6y and 6z are
small enough, the results of a calculation at the completion of a certain
relative change of configuration are independent of ¢. This follows from the
fact that, having picked the relevant physical parameters of the system (which
determine the nature of the configuration changes), a time or space scale can
be chosen to produce any arbitrary desired value of . To interpret the re-
sults in terms of specific physical parameters, however, ¢ must be specified.
We have chosen ¢ = 5 = 0.137 throughout the problems.

The results of the test problems are arranged according to the type of
problem studied as follows,

1. A Rigorous Comparison Solution

The flux-difference form (41)* has been tested with a rigorous solution
of Eq. (48). We introduce a similarity variable r = y — vz and assume that
T is a function of r alone. Q and L are taken to be fixed constants (one
material only). The corresponding solution is

3 3 2
T ™) 3
(T E%—ln (1 + "Q>=4£7L3 vz — ) (49)

To solve the problem numerically, it is necessary to devise a way of develop-
ing the proper input at the wall., This is accomplished by using the condition

oT(T) _ _ 3n°v
dy 41.Q

and approximating this by

*Names of the flux-difference forms are summarized on page 40 for refer-
ence.

- 30 -



2
ny\ _ n 3n voy
11("“0) F(Tl) ¥ a1

In this manner we solve numerically (iterating with Newton's method) for Tg
each cycle and, in terms of it and T’ll, calculate a wall flux according to the
form in Eq. (41), assuming that cell #0 has the same value of A (or L) as
#1. The value chosen for v is v = 2.6.

The result is shown in Fig. 1 for a time by which the radiation wave
had traveled a little over 30 cells. At this time, the total energy was about
1.5 per cent higher than the correct amount,

A similar test was made using flux-difference form (42), The results
were equally good, showing that this form is also useful when the material
is homogeneous.

2. A Set of One-Material Problems

«In this set of problems, we have but one material for which L(x) = Q(x)
= 1, The wall flux is identically zero, and the temperature is put in initially
as a step function, having the value T =0 from y = 0 to y =50, and T = 0
thereafter.

The first series of tests used a weighted average of the flux-difference
forms (42) and (43), the weight for (42) being « and that for (43) being (1 — a).
Tests were performed for various values of @ from zero to one. For a = 0,
the configuration never changes. In the first cell for which T = 0, A also is
zero and (43) gives zero flux at its left boundary.

A series of temperature profiles for 6y = 10 at a time z = 100 is
shown in Fig. 2 for various values of @. The most noticeable effect of de-
creasing « is that the radiation wave front becomes more and more abruptly
truncated. Since the system is rigorously conservative of energy, the tem-
perature behind the front becomes slowly larger, but the change in that region
is relatively small.

Some of the problems of the series were repeated with smaller or
larger cell sizes to see if the calculation results could be invariant for any
particular value of @. A measure of the change of configuration with cell
size is given by the change of radiation front position. These variations are
shown in Fig. 3. It is seen that for 0.7 < « < 1, there is near invariance
with 6y, and the results are given with fairly good accuracy in that- range.

On this basis, the temperature profile in Fig. 2 for « = 1 is considered to
be close to the correct form, The convergence of other methods to give this
profile as 6y became small was further verification of the validity of the
criterion that based the validity of a solution on its invariance with dy.
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This same calculation was also performed with flux~-difference form
(45). The result was in close agreement with the previous results for o = 1,
and so this form also seems acceptable for one-material problems. If the
method is in error, it is in the direction of calculating the radiation flow to
be slightly too fast.

Likewise, flux-difference forms (41) and (44) were applied to the same
problems, and the results appear equally good. In all cases, the results
were good at all times.

The conclusion from this series of tests is that there is a wide variety
of methods for performing the flux space differencing that lead to very nearly
the correct numerical solution in this rather extreme one-material problem.
The applicability to two-material problems, however, is by no means universal
ag the following tests show.

3. A Set of Two-Material Problems

The wall is opaque; extending from it to y = 100 is a material for
which L(x) 0.001, Q(x) = 10; beyond that material is a second one for
which L(x) Q) = 1. Initially, the first material is at a temperature
T = 10; the second one has T = 0.

In the first series of tests, we used flux-difference form (42) every-
where except at the material interface (which always lay on a cell boundary).
There we used a weighted average of forms (42) and (43) with weights o!':

(1 — a'), respectively. The results show that the boundary flux becomes
smaller as a' decreases. Several of the profiles are shown in Fig. 4.

To determine which value of a' gives best results, we performed some
of the calculations again with larger or smaller values of 6y. Cutting dy to
half its value, for example, resulted in a greater flux at the boundary for
the case a' = 0.001 and a smaller flux for the case a' = 1.0. Doubling oy
produced just the opposite effects. Thus, 1 seemed possible to determine a
value of @' which would give the correct result. This proved not to be the
case.

The criterion of invariance with 6y was applied to the total energy that
had flowed into the second material by a given time., Thus, we could find a
value of o' such that the energy would be nearly independent of 6y at, say,
time z = 100. Using this value of a' throughout the problem, however, we
discovered that before the time at which the energy was correct, there was
too litftle, and afterwards there was too much. In other words, for any fixed
o', there was an initial delay in flux passage, but this was gradually over-
come by too great a flux, and, eventually, the amount of energy which was
calculated to pass the interface surpassed the correct value and continued to
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climb beyond it. These results are shown in Fig. 5, where we have plotted
the fixed value of a' required to ensure that the proper energy had gone in-
to the second material by a given time z, as a function of z. On the basis
of these results, it was concluded that no fixed combination of forms (42)
and (43) was adequate. Attempts at devising a variable weighting of them
were abandoned in favor of other more promising methods.

The same tests were performed using flux-difference form (44), and
these gave extremely poor results. The radiation does not flow nearly fast
enough across the interface.

Likewise, we obtained results for the same problem using flux-difference
form (41) everywhere. The results of the tests showed that for any finite
value of Jy, there is an initial delay in getting the flow started, but once
started, the flow thereafter proceeds at the proper rate. The incorrect flow
occurs during the time when conditions near the interface are far from
steady. In many problems of interest, flow at an interface differs from
steadiness for only a small part of the total time of interest.

In Fig. 6 is shown the total energy which has passed across the inter-
face as a function of time for two different values of 6y.

We also used the flux-difference form (41') which allows for a correc-
tion if the situation is nonsteady. The correction did, indeed, give an im-
provement, having an effect during the early nonsteady phase only, as ex-
pected. It raised the later flux function to a slightly higher value parallel
to its former self. Even, so, there is still a small lag in getting the flow
started.

C. Conclusions from the Numerical Tests

The results of the tests indicate that in a one-material problem, or
one for which the material is nearly homogeneous, several methods of cal-
culating give good results. The method of opacity averaging (43) is, per-
haps, poorest.

For problems in which there is a strong and persistent material dis-
continuity, several of the methods give consistently poor results. The method
which has most nearly universal applicability is (41) [or (41') for persistently
nonsteady situations], since the energy flux asymptotically approaches the
correct local value as local conditions approach steady state. The often-used
methods (42) and (43) or a fixed combination thereof are of questionable va-
lidity, as the interface fluxes may be in error even as steady state is ap-
proached.
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APPENDIX I

MATTERS RELATED TO TIME DIFFERENCING

The replacement of a differential equation by a finite-difference ap-
proximation thereto results in solutions that differ from the exact solutions.
The errors may be small and roughly proportional to the time and space
intervals. An analysis of such errors is called an accuracy study. The
errors can, in certain circumstances, become suddenly very large—indeed,
grow without bound—even under circumstances such that an accuracy study

would predict decreasing errors. An analysis of these errors is called a
stability study.

1., Stability

A solution of the diffusion equation (19) is 6 = 65 = const. Likewise,
one can find a solution 6 = 6g(1 + €), where e(x,t) is a function whose mag-
nitude is everywhere small compared with 1. By keeping lowest order terms
in an expansion in €, we obtain in place of Eq. (19)

O¢ 2
ot DV e

where

3
dca 6 A(4)

= 4
3 -aTo[Em(GO) + aeo]

Since the equation for ¢ is now linear, its general solution will be a sum of
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all special solutions. In particular, it can be a sum of terms of the sort

ks ot
=e e
which is a solution provided w = -—Dkz. Thus, since D > 0, the disturbance,
€, will damp for any wave number k.

This same analysis can be applied to the difference equation which is
(in one~dimension for simplicity)

n+1 n D6t [n n n
€, - 5 =—2 €,+1 + €j_1 —_ 2€j
J 5x J
The trial function
2o eik] oW
i
is a solution provided
ew = 1—2D6t (1 — cos k)
2
ox
The most extreme case is that for which cos k = —1, in which case, ew > -1
only if
2D¢;t <1
6x

This condition, then, must be satisfied for stability, for if it is violated and
ew < —1, then the perturbation oscillates with increasing amplitude rather
than damping as it should.

We have tested this well~known stability requirement on many of the
problems reported here, and found that its prediction is, in all cases, highly
accurate.

Various implicit differencing methods have been proposed for the time
advancement. Some of these are unconditionally stable. The methods
studied in this paper for space differencing can be incorporated into several
of these implicit time-differencing procedures. The incorporation is more
convenient in some cases than in others,
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2. Accuracy

Repeatedly, tests were made to ensure that 6t was small enough in
the numerical computations so that any further decrease in its size made a
negligible difference in the results. The result of all these tests is that
whenever 6t is small enough for stability, it is also small enough for the
desired accuracy. This fact is of value in applying explicit differencing
methods, because the resulting solution is either accurate (relative to time
advancement), or else the computation cannot proceed at all owing to instabil-
ity. The stability of implicit methods removes this automatic warning sys-
tem of error. :
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APPENDIX II

FURTHER DISCUSSION OF THE STEADY-STATE DIFFERENCING METHOD

The principle by which flux-difference form (41) was derived may be
difficult to apply when expressions for mean free path as a function of tem-
perature are complicated or are of different form for two adjacent materials.
In some circumstances, the mean-free-path function is used in the form of a
table of numbers, in which case the situation is even more complicated. The
discussion in this appendix is meant to indicate how some of these difficulties
may be overcome.

Consider the general application of the principle to the problem of de-

termining the instantaneous energy flux at a cell boundary which lies between
two materials. '

b

The boundary, b is placed at x = 0. For generality, we assume two
different cell sizes with the known temperatures, 6. and 6, located at the
centers. The mean-free-path formula is assumed to be of the form

A (0) for x>0
A (6,x) =

A_(9) for x <0
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It is further assumed that F is a fixed constant and that 6 is continuous in
the range — 6x_/2 = X = 6x,./2. Then Eq. (40) can be integrated,

0
f Fdx = f —_ ca 6 A_(6)de
-(0x_/2)

or

36x

o
F -2 f b B\ (0)ds
_J,

Similarly,

o
_ 8ca [+ 3
F = _—36x+f 6 A.(6)d6
%

This is a pair of simultaneous equations from which the boundary tempera-
ture, 6y, is to be eliminated, giving an expression for the boundary flux. In
those cases where the algebraic manipulations are simple, the procedure is
straightforward to apply. In the more complicated cases, the following ap-
proximation procedure may be useful.

In each of the simultaneous equations, F, considered to be a function
of 6},, can be expanded in a Taylor's series about some temperature 00, as
yet not specified:

6
8ca 0 3 3
F = — reg ‘/9‘ 8 A_(0)do + (6, eo)aoA_(eo) e
8ca | O 3 3 |
0

If 6, is chosen sufficiently close to 6 , then one can achieve sufficient ac-
curacy even though the series be truncated beyond those terms explicitly

shown. Then Bb can be eliminated, and we obtain
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90 3 0y 5
x+(00) f ex_(e)da+x_(oo) f 8°A,(6)do

8ca f.. 60

M (8)8%_ + A_(6)0%,

Note that if A, (6) = A.f(9) where £(6) IS the same function for both materials,
then this approximate expression yields the exact solution. In such a case,
the result is, of course, independent of 8, and we could put 65 = 6,. In gen-
eral, if there is a large discontinuity in transparency at the interface, then
6y, will be close to the temperature on the side with greater transparency.
For illustration, let that side be the + side. Then it seems reasonable to
approximate 6y = 6,, in which case

A (64) ' 04
8ca ! 3
F==-03) [A+(0+)6x_ + x_(e+)ax+} ‘/; 6°2_(6)do

-

This form is relatively easy to work with, and will be valid in many situa-
tions of interest. The integral can be evaluated numerically if necessary,
and if one is working with tables of numbers to represent the mean-free-

path formula, then one could also form values of j; 9 93}\_(6)d9 and work
with differences of these.

Tests of these approximation forms with the simple functions used in
this report for mean free path would not be useful, since these approximation
forms become exact with the functions used. This fact is encouraging when
one considers that there is generally a qualitative similarity in mean-free-
path behavior among many materials, the differences being capable of repre-
sentation, approximately, by various multiplicative constants.
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NOTE

In the following figures, all quantities are plotted in their dimension-
less forms as shown at the coordinate axes and on the graphs:

T = dimensionless temperature
y dimensionless distance
z dimensionless time

']

Tick marks on distance axes show cell size.

The difference forms are summarized for reference:

(41) Steady-State Method

(41') Extended Steady-State Method
(42) A-Average Method

(43) Opacity-Average Method

(44) Modified Opacity-Average Method
(45) Linear-Difference Method
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Fig. 1 Temperature profiles for the similarity problem at time z = 120.

Eq. (41).
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Flux-difference form is



IollllIIIllllllllllllIlllllllllllllllllllllll

Z+0 a= |0, 100

TN N 1 N N N IO T T T T S T N I A B
o] 50 100 150 200 250 300 350 400 450

y

Fig. 2 Temperature profiles at time z = 100 for the one-material problem with initial temperature
profile as shown for z = 0, Wall flux is zero. The relative weighting of flux-difference
forms of Eqs. (42) and (43) is a:(1 — ). 6y = 10.
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Fig, 3 Position of the radiation front (at T = 1) as a function of 3 + log'10 a,
derived from data shown in Fig. 2 and analogous data for éy = 5
and 25.
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Fig. 4
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Temperature profiles at time z = 100 for the two-material problem with initial temperature
profile as shown for z = 0. Material discontinuity is at y = 100. Wall flux is zero. The
relative weighting of flux-difference forms of Eqs. (42) and (48) is 1:0 everywhere except at
the material discontinuity where it is a':(1 — o'). 6y = 10.
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Fig. 5 The fixed value of o' required in order to ensure that the proper
total energy would cross the material interface by time z, as a
function of z.
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ENERGY (ARBITRARY UNITS)
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Fig. 6 Energy as a function of time passing the material interface for two
different cell sizes. Flux-difference form is Eq. (41).
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